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Abstract—Dropout and DropConnect are known as effective
methods to improve on the generalization performance of neural
networks, by either dropping states of neural units or dropping
weights of synaptic connections randomly selected at each time
instance throughout the training process. In this paper, we extend
on the use of these methods in the design of neuromorphic spiking
neural networks (SNN) hardware to improve further on the
reliability of inference as impacted by resource constrained errors
in network connectivity. Such energy and bandwidth constraints
arise for low-power operation in the communication between
neural units, which cause dropped spike events due to timeout
errors in the transmission. The Dropout and DropConnect
processes during training of the network are aligned with a
statistical model of the network during inference that accounts
for these random errors in the transmission of neural states
and synaptic connections. The use of Dropout and DropConnect
during training hence allows to simultaneously meet two design
objectives: improving robustness of inference to dropped spike
events due to timeout communication constraints in network con-
nectivity, while maximizing time-to-decision bandwidth and hence
minimizing inference energy in the neuromorphic hardware.
Simulations with 5-layer fully connected 784-500-500-500-10 SNN
on the MNIST task show a 3.42-fold and 7.06-fold decrease in
inference energy at 90% test accuracy, by using Dropout and
DropConnect respectively during backpropagation training. Also
the simulation with convolutional neural networks on the CIFAR-
10 task show a 1.24-fold decrease in inference energy at 60% test
accuracy by using Dropout during backpropagation training.

Index Terms—Neuromorphic Hardware, Spiking Neural Net-
works, Timeout Error, Dropout, DropConnect

I. INTRODUCTION

DEEP neural networks (DNN) can be trained on massive
datasets to perform a wide variety of object classification

and recognition tasks [1]. One drawback of DNN is that
they usually require power hungry hardware such as GPUs.
Using neuromorphic hardware for cognitive processing has
been proposed as one of the solutions to restrict power under
severe resource constraints [2]–[5]. Neuromorphic hardware
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transmit information through spike events, and hence focus
their computational effort on currently active parts of the
network, effectively saving power on the rest of the network.

Currently, neuromorphic hardware that realize the operation
of spiking neural networks (SNN) composed of millions of
integrate-and-fire (IAF) neurons with high efficiency have
emerged [6]–[8]. Such neuromorphic hardware implement a
reconfigurable neural network on hardware by interconnecting
neuron units via routers. Additionally, in typical neuromorphic
hardware, as many neurons are serviced by the same router,
if two or more events reach the arbiter within the same time
step, an arbiter assigns priority randomly to incoming events
to avoid the event collisions [9]–[12]. However, reducing the
processing rate of the routers for low-power operation of the
neuromorphic hardware, causes sporadic dropped spike events
due to timeout errors in the transmission.

In order to analyze the effect of spike event drops on the
quality of inference in SNN, we created a model of spike event
registration and communication in the arbiter and router in the
presence of timeout errors in the transmission and incorporated
this model with conventional rate-based inference for SNN
in the simulation environment [13]. Also we proposed to
extend the widespread use of Dropout [14] and DropConnect
[15], shown to be effective to improve on the generalization
performance of neural networks, for training of DNN in the
design of spike-based neuromorphic hardware. The aim of
this work is to extend the benefits obtained by Dropout and
DropConnect in improved generalization performance to fur-
ther improvements in the reliability of inference, as impacted
by resource constrained errors in network connectivity of
optimized hardware. Specifically, we analyzed the effect of
Dropout and DropConnect during backpropagation training of
a DNN on inference using the trained DNN mapped onto a
rate-coded SNN through weight and threshold balancing [16],
on a conventional MNIST task [17].

This work extends these results to other datasets beyond
MNIST, using the CIFAR-10 dataset [18] in SNN inference
to analyze the effect of Dropout during training with DNN.
Furthermore, we investigated effects of scaling the weights
using two methods: 1) scaling up the normalized weights, and
2) scaling down the weights before normalizing, to correct for
weight mismatch between DNN training and SNN inference
induced by Dropout during training.
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Fig. 1. Dropout and DropConnect correspondence.

II. BACKGROUND

A. Spiking Neural Networks

Spiking neurons in SNN generate an action potential “spike”
represented as a binary variable that goes active only when
the accumulated synaptic input contributions exceed a set
threshold. The sparse and stochastic activity of the neural
units, which only operate when incoming spikes arrive, leads
to high energy efficiency in neuromorphic hardware imple-
mentation [2].

The accuracy of inference by SNN using normalized
weights obtained directly from training a DNN has shown
competitive performance approaching the accuracy of infer-
ence by DNN [16]. The weights in the SNN for inference
are obtained by training the DNN with rectified linear units
(ReLU) with zero bias, and normalizing the trained weights
by the maximum weight or activation value in each layer. To
obtain ReLU equivalence during inference, the SNN uses an
IAF model with soft decremental reset rather than the usual
hard reset to the rest potential. The dynamics of the membrane
potential of spiking neurons is given by [19]:

Vj(t+ 1) = Vj(t) +
∑
i

wi,j · si(t) (1)

sj(t) = (Vj(t) ≥ Vth) (2)

where si(t) is the binary-valued spike from neuron i, Vj(t)
is the membrane potential of neuron j, wi,j is the weight of
synaptic connection from the ith to the jth neuron, and Vth

is the spike threshold. When the membrane potential Vj(t) is
higher than the threshold Vth, jth neuron generate the spike
sj(t). Additionally, each cycle all active neurons k generating
a spike sk(t) = 1 are subjected to a constant decrement in
membrane potential prior to reset:

Vk(t)← Vk(t)− Vth (3)

Using the same value for the spike threshold and the mem-
brane decrement Vth ensures consistency with the ReLU
mean-rate model.

Fig. 2. Model of neural spike event communication path.

B. Dropout and DropConnect

Dropout [14] and DropConnect [15] are widely used in
DNN training owing to their superior generalization perfor-
mance. The operation of Dropout and DropConnect during
training, and differences and correspondences between them,
are illustrated in Fig. 1. While Dropout drops the states of
neural units randomly selected at each time instance through-
out the training process, DropConnect instead drops weights
of synaptic connections. As DropConnect drops the weights
randomly, there is some chance of dropping only the weights
connected to a specific neuron, which becomes equivalent to
Dropout as shown on right side of Fig. 1.

III. EFFECT OF NETWORK CONNECTIVITY

To analyze the effect of spike event drops on the quality
of inference in SNN, we created a model of spike event
registration and communication in the arbiter and router in
the presence of timeout errors in the transmission shown
in Fig. 2. Input data represented by numerical value (e.g.
grayscale) are transformed into Poisson synchronized clock
signals by comparing value output from a random number
generator. In typical applications for computer vision, the
firing rates of the Poisson synchronized clock signals are
proportional to the numerical value of each image pixel [20].
The probability of generating spikes from multiple neurons
within the same time step is non-negligible because of the
large number of neurons that are mounted in neuron cores
on the neuromorphic hardware. Thus the spikes generated by
neurons are gated to the routers for transmission via arbiters
to avoid signal collision on the neuron communication path.
The arbiter randomly selects spikes output by multiple neurons
within the same time step and time-multiplexes the spikes in
random order to avoid systematic bias in latency for spikes
from specific neurons. The signals time-multiplexed by arbiter
are input to the queue in the router in the multiplexed order.
The queue operates as first-in first-out (FIFO) mode queue.
The signals output from the queue are transmitted to receiver
neurons via a demultiplexer. If the data length of the signals
input to the queue exceeds the queue depth, the leftover
signals exceeding the queue capacity are dropped and never
transmitted to receiver neurons, producing a timeout error.
Importantly, the identities of sender neurons with dropped
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Fig. 3. 5-layer network used for evaluating the effect of timeout communication errors in SNN inference on the MNIST handwritten digits classification task.

events caused by router timeout are random, because the order
of the signals input to the queue is randomly determined
by the arbiter. The rate of timeout errors in dropped signal
transmission increases when the processing rate of routers
decreases, or when the input spike rate increases. Hence the
incidence of timeout errors can be reduced by increasing the
clock signal, which implies a trade-off between accuracy and
power consumption in the network communication.

We analyzed the effect of timeout errors in the neuron
communication path during inference in SNN, initially without
Dropout or DropConnect during DNN training. Figure 3 shows
the simulation model for this analysis. We used the MNIST
dataset [17] which consists of 28×28 grayscale images, each
containing a digit 0-9 for our experiments. The training set
consists of 60,000 digits and the test set consists of 10,000
digits. The grayscale values of the MNIST were normalized
between 0 and 1. We trained five-layer fully connected neural
networks (FCN), 784-500-500-500-10, with ReLU activation
function for the neural units, and without bias units. The
FCN was trained by backpropagation using stochastic gradient
descent, a fixed learning rate of 1, and batch size of 100.
After training the FCN, we used the weight normalization
procedure of [19] outlined in Section II. Inputs were generated
for each neuron in input layer with firing rates proportional to
the grayscale pixel value of each MNIST image. We evaluated
SNN performance on the test set by collecting statistics over
10,000 parallel models each trained on the training set from
random initial conditions.We used the spiking neuron model
as shown in Equations (1)-(3). The threshold values of the
spiking neurons were fixed to 1. The classification output
of the rate-coded SNN was evaluated through spike counting
over a variable time interval defining classification bandwidth.
The router queue depth was set to 500. The input rate of
Poisson spike trains were set to 1k events/sec. Time step was 1
msec. To evaluate the effect of timeout communication erros
in SNN inference, the processing rate of routers was set to
1M events/sec without signal drop, and 100k events/sec with
signal drop.

Figure 4 shows the simulation results of accuracy and
accumulative synaptic operations So for SNN inference and
Figure 5 shows the spike event activity per time step in the
hidden layers and output layer. Synaptic operations, So, is
derived by summing the product of output spikes and fan-out
for each layer. Accumulative So is derived by accumulating
So, for every time step, over the entire test set. Therefore,
accumulative So in Figure 4 represents the energy consumed

Fig. 4. Effect of timeout errors on SNN inference accuracy, as a function of
the accumulative synaptic operations So over the entire MNIST test set.

Fig. 5. SNN network activity per time step in hidden and output layers at
constant input layer event rate. Time step is 1 msec.

by the neuromorphic hardware to reach a certain accuracy,
over the entire test set. In the case of timeout error, shown by
the dashed curve in Figure 4, the accumulative So to reach
convergence at nominal accuracy was larger, hence degrading
the energy performance. On the other hand, the final accuracy
without signal drop reached 98.17% and the final accuracy
with signal drop reached 98.14%. As characteristic for rate
coding in SNN, the information present in the sourcing data
represented in numerical format such as grayscale is conveyed
to the network more accurately when the number of spikes
input to the network increases [20]. Hence, with sufficiently
elapsed time, until enough spikes are input to the network, the
final accuracy during inference by rate coding reaches almost
same value whether signals are dropped or not.



4 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 4, DECEMBER 2019

Fig. 6. Network communication model with timeout signal drop at routing nodes, and equivalent network graph model with Dropout/DropConnect.

IV. DROPOUT AND DROPCONNECT FOR RELIABLE
NEURAL COMPUTING

We propose a method to improve the degradation of the
convergence So caused by timeout error during SNN inference
by using Dropout and DropConnect during training. Recall
that Dropout and DropConnect operate by dropping states
of neural units or weights of synaptic connections, randomly
selected at each time instance throughout the training process
in DNN. Since signals transmitting from sender neurons in
the SNN are dropped randomly by the function of arbiter
when timeout error occur at routers, the statistical model
of neuromorphic hardware during inference in SNN can be
aligned with the Dropout processes during DNN training as
shown in Fig. 6. Furthermore, since all network models of
Dropout during training are subsumed by equivalent network
models of DropConnect during training as shown in Fig. 1, the
statistical model of neuromorphic hardware during inference
can also be aligned with the DropConnect processes during
training. Importantly, by using Dropout and DropConnect
during DNN training, since the network is trained with the
same configuration as at inference by SNN, an improvement
in the reliability of inference by SNN with signal drop is
expected. We analyzed the effect of using weights trained
with Dropout and DropConnect in SNN inference through
simulations on the MNIST and the CIFAR-10 tasks.

A. MNIST task with Fully Connected Neural Networks

The fundamental setup of analyzing the effect of using
weights trained with Dropout and DropConnect in inference
for SNN is the same as the analysis in Section III. We used the
MNIST dataset and five-layer FCN, 784-500-500-500-10. The
drop rates of Dropout and DropConnect which define the rate
of dropping nodes and weights during training were set to (0,
10, 20, 30, 40, 50). Dropout and DropConnect were applied
to only the neurons of hidden layers and not applied to the
neurons of the input layer. Note that the convergence time
of SNN inference, i.e. inference energy, increases as the final
accuracy increases [19]. In order to isolate the influence of the
difference between using Dropout and DropConnect during
training, we trained the network so that the final accuracy of

TABLE I
ACCURACY OF SNN INFERENCE USING WEIGHTS TRAINED

WITH/WITHOUT DROPOUT/DROPCONNECT.

Drop rate (%) Accuracy Accuracy
w/ Dropout (%) w/ DropConnect(%)

10 98.15 98.15
20 98.14 98.24
30 98.22 98.14
40 98.17 98.20
50 98.23 98.20
0 98.17∗

∗Drop rate = 0% means training w/o Dropout and DropConnect.

SNN inference is approximately at the same level across all
conditions in this analysis. Table I shows the results of final
accuracy of SNN inference for each condition.

Figure 7 (left) shows the simulation results of SNN infer-
ence accuracy using weights trained by Dropout. In order to
compare the convergence So among all conditions, the results
of accumulative So when the accuracy reached 90% were
compared. The convergence So using weights trained using
Dropout was about 3.42 times lower at the maximum than
when not using drop methods during training. In this anal-
ysis, the degradation of convergence So was most improved
when the Dropout rate was 50%. Figure 7 (right) shows the
simulation results of SNN inference accuracy using weights
trained by DropConnect. The convergence So for weights
trained using DropConnect was about 7.06 times lower at the
maximum than when not using DropConnect during training.
In this analysis, the degradation of convergence time was most
improved when the DropConnect rate was 50%.

Figure 8 shows the total number of spikes per time step in-
put to hidden and output layers. By using trained weights with
Dropout and DropConnect, the number of spikes increased in
all conditions comparable with the condition without both drop
methods. In addition, the conditions of drop rate with the most
improved convergence So was aligned with the conditions
of drop rate with the largest number of spikes. The reason
of increasing spikes when using Dropout and DropConnect
during training is that the value of the weights for SNN
inference is large. Figure 9 shows the distribution of the
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Fig. 7. SNN inference accuracy, as a function of accumulative synaptic operations So over the MNIST test set, using weights trained with Dropout (left) and
DropConnect (right).

Fig. 8. The total number of spikes in hidden and output layers per time
step at varying Dropout or DropConnect rate during training consistent with
transmission timeout signal drop rate during inference.

weights value using in SNN inference. When using the weights
trained by using Dropout and DropConnect to SNN inference,
the weights are multiplied the scaling factor less than unity
”1” determined by drop rate [14]. For example, the weights
are multiplied ×0.8 when the drop rate is 20% for inference.
Note that as the weights for SNN inference are obtained by
normalizing the weights trained in DNN by the maximum
weight and activation value in each layer [16], in case of very
small maximum weights trained in DNN before normalization,
the weights for SNN inference after normalization becomes
large. As a result, since the weights before normalization
are scaled down when using Dropout and DropCoonect, the
weights after normalization become large under all conditions
using Dropout and DropConnect, hence increasing the number
of spikes. Figure 10 shows the accumulative So to reach
90% accuracy. This result shows that the use of Dropout
and DropConnect realize improving inference energy in the
neuromorphic hardware.

Fig. 9. The distribution of the weights for SNN inference trained by using
Dropout.

Fig. 10. Accumulative synaptic operations So to reach 90% accuracy across
the MNIST test set.
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Fig. 11. Convolutional neural networks used for evaluating the effect of timeout communication errors in SNN inference on the CIFAR-10 image classification
task.

Fig. 12. Effect of timeout errors on convolutional SNN inference accuracy,
as a function of accumulative synaptic operations So across the CIFAR-10
task.

Fig. 13. Convolutional SNN network activity on the CIFAR-10 task at 1k
events/sec input layer event rate.

B. CIFAR-10 task with Convolutional Neural Networks

Next, we analyzed the effect of using the weights trained
with Dropout in SNN inference by using convolutional neural
networks (CNN) with the CIFAR-10 dataset [18] to check
whether the effects of improving the SNN inference energy
using Dropout extend to other datasets beyond MNIST. Fig-
ure 11 shows the simulation model for the analysis using
the CIFAR-10 dataset with CNN. The CIFAR-10 dataset
which consists of 32×32 RGB images, each containing
10 kinds of image. The training set consists of 50,000
images and the test set consists of 10,000 images. The
RGB values of the CIFAR-10 were normalized between 0
and 1. The architecture of CNN used in this analysis was

Fig. 14. Distribution of weights for convolutional SNN inference on the
CIFAR-10 task trained using Dropout.

input(32×32, 3ch)-conv1(5×5, 20ch)-pool1(2×2)-conv2(5×5,
50ch)-pool2(2×2)-fc1(500)-output(10). The activation func-
tion of the trained CNN was ReLU with no bias. The stride of
conv1 and conv2 was 1, and the stride of pool1 and pool2 was
2. The padding was not used. We used average pooling. The
CNN was trained by backpropagation using momentum SGD
and the batch size of 128. The initial learning rate was 0.5 and
the learning rate was multiplied by 0.5 every 70 epochs. The
momentum coefficient was 0.9. We trained the weight under
two conditions with and without Dropout. The drop rates of
Dropout were set to 25% for conv2 layer and 50% for fc1
layer. In SNN inference, We used average pooling model for
SNN used in [16]. We assumed that the model shown in Figure
11 only process 1 batch test data in this simulation, hence all
of test data were processed parallelly by 10,000 models.

Figure 12 shows the simulation results of SNN inference
accuracy. Figure 13 shows the total number of spikes in each
layer and figure 14 shows the distribution of the weights
value in kernel of convolutional layers and fully connected
layer used in SNN inference. The final accuracy in SNN
inference without and with Dropout conditions reached 66.1%
and 66.0% respectively. To compare inference energy among
each condition, we compared So to reach 60% accuracy at
convergence. This So using the weights trained with Dropout
was about 1.24 times lower at convergence than when not
using Dropout during training.
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TABLE II
ACCURACY OF SNN INFERENCE USING THE WEIGHTS SCALED UP AFTER

NORMALIZING.

Dropout rate (%) scaling factor Accuracy (%)
0 ×0 98.17

50 ×0 98.23
0 ×3 96.33
0 ×4 95.86
0 ×5 95.57

∗Drop rate = 0% means training w/o Dropout and DropConnect.

Fig. 15. SNN inference accuracy on MNIST by scaling up the weights after
normalizing.

V. COMPARISON WITH SIMPLE WEIGHT SCALING

Since the energy of SNN inference can be reduced by
using larger values for weights trained with Dropout and
DropConnect, it seems that the energy of SNN inference
can be reduced simply by scaling up the weights, without
training with Dropout and DropConnect. In order to confirm
this assumption, we used the weight which are simply scaled
up for the simulation of SNN inference. In addition, since we
normalized the weights by [16] for SNN inference as described
in Section II-A, we also used the weight scaled down before
normalizing for the simulation.

A. Scaling Up the Normalized Weights

First, we analyzed the effect of using the normalized weights
simply scaled up. The fundamental simulation setup for this
analyzing was same as in Section IV-A. We used 5-layer FCN
and MNIST dataset. The scaling factors of the weighs which
were multiplied by the normalized weights trained without
using Dropout and DropConnect were ×3, ×4 and ×5.

Figure 15 shows the accuracy of SNN inference and Figure
16 shows the total number of spikes per time step input to
hidden and output layers in each condition. Although the
convergence So was reduced due to increasing the number
of spikes, the final accuracy of SNN inference was degraded
in each condition as shown in Table II. The reason of degraded
the final accuracy is that the ReLU characteristics of the

Fig. 16. The total number of spikes in hidden and output layers per time step
at varying scaling up factor for normalized weights.

Fig. 17. Input-output spike rate transfer function for scaled-up weights after
normalization.

Fig. 18. Intuitive explanation for the nonlinearity in spiking neuronal response
for large scaling-up factor. Increasing the input spike rate does not produce
proportionally larger output spike rate due to each input spike pushing the
membrane potential well over the threshold, permitting the output to spike in
consecutive cycles.
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TABLE III
SNN INFERENCE ACCURACY ON MNIST BY SCALING DOWN THE

WEIGHTS BEFORE NORMALIZING.

Dropout rate (%) scaling factor Accuracy (%)
0 ×0 98.17

50 ×0 98.23
0 ×0.7 97.45
0 ×0.6 97.37
0 ×0.5 97.08

∗Drop rate = 0% means training w/o Dropout and DropConnect.

Fig. 19. Results of SNN inference using the weights scaled down before
normalizing.

spiking neuron showed non-ideal characteristics. Figure 17
shows the relationship between input spike rate and output
spike rate of spiking neurons in this simulation. When the
scaling factor is small, the spiking neurons show ideal ReLU
characteristics. But when the scaling factor is large, the ReLU
characteristics of spiking neurons show non-linearity in the
area of the large value of multiplied the input spike rate and
the value of weight. The reason why the output spike rate
does not increase substantially under increasing product of
input spike rate and weight can be understood as follows. The
output spike rate is limited by the clock signal which drives the
spiking neuron due to the large value of weights. The value
of weights becomes large when the value of scaling factor
is large. When the value of weights becomes two times or
greater than the threshold Vth of the spiking neurons shown
in Equations (2)-(3), since the membrane potential after spike
input to the neurons becomes greater than 2×Vth as shown in
Figure 18, the membrane potential does not become smaller
than Vth even though the membrane potential is subtracted by
Vth following Equation (3). In this case, even if the spike is not
input to the neurons at the next time step, the neurons output
the spike because the membrane potential is greater than Vth.
Also, the larger the value of weights, since the membrane
potential is easy to keep the value higher than Vth even if the
spike is not input to the neurons, the higher the probability
that the neurons output the spike every time step. As a result,

Fig. 20. The total number of spikes in hidden and output layers per time step
at varying scaling down factor for the weights before normalizing.

Fig. 21. Input-output spike rate transfer function for scaled-down weights
before normalizing.

even if the input spike rate is further increased when the
neurons keep the state of outputting the spike every time step,
since each neuron output spike only once per each time step,
the output spike rate of the neurons cannot be increased in
accordance with the input spike rate.

Therefore, when the spiking neurons keep the linearity,
since the arithmetic operations of the neural networks used in
this simulation are only inner product and ReLU operations,
the value of the loss function is simply scaled when the
weights in the neural networks are scaled and the classification
result does not change. However, when the ReLU characteris-
tics of spiking neurons show the non-ideal characteristics, the
classification result changes because the value of the loss func-
tion is nonlinear with respect to the scaling factor of weight.
Therefore, even when scaling up the weights after normalizing,
the So of SNN inference reduces due to increasing number
of spikes, while the final accuracy of the SNN inference is
degraded.

B. Scaling Down the Weights before Normalizing

The reason for increasing the value of the weights trained
with Dropout and DropConnect used in SNN inference is
that the weights before normalizing are multiplied by the
scaling factor less than 1 decided by the drop rate. There-
fore, if the weights scaled down before the normalization
are used for SNN inference, it is assumed that the So of
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SNN inference is reduced. To analyze the effect of using the
weights scaled down before normalization, we scaled down the
weights trained without Dropout. After that, we normalized
the scaled weight for SNN inference. The simulation setup
for this analyzing was same as previous sub-Section V-A.
The architecture and dataset used for this simulation were 5-
layer FCN and MNIST. The scaling factors multiplied by the
weights before normalizing were ×0.7, ×0.6 and ×0.5.

Figure 19 shows the accuracy of SNN inference. Figure
20 shows total number of spikes per time step in hidden
and output layers using the scaled down weight. The final
accuracy of the SNN inference is shown in Table III. The
relationship between input spike rate and output spike rate
of spiking neurons in this simulation is shown in Figure 21.
Although the So was reduced due to increasing the number of
spikes, the final accuracy of SNN inference was degraded in
each condition due to the non-ideal ReLU characteristics of
the spiking neurons.

In both simple weight scaling methods, the convergence So

of SNN inference was improved but the final accuracy was
degraded. On the other hand, our proposed methods using
Dropout and DropConnect during training can easily obtain
a neural networks model that reduces convergence So without
degradation of final accuracy. Therefore, proposed methods
can be applied easily to compensate for the degradation of
SNN inference energy due to the timeout errors generated by
the router.

VI. CONCLUSION

Signal drop due to router timeout increases the SNN in-
ference energy. We showed that this degradation in inference
energy can be minimized by training the network using the
Dropout and DropConnect frameworks. Increased generaliza-
tion in the architecture of neuromorphic hardware fomented
by these training frameworks increases the robustness of the
network to communication reliability faults. In this paper we
have demonstrated that, aside from improving accuracy, the
robustness benefits of Dropout and DropConnect contribute
to maximizing time-to-decision bandwidth and minimizing
inference energy of a neuromorphic hardware by allowing
lower speed-reliability operation during inference.
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